Hal	1 Tick	et Ni	umbe	er:				
								Code No. : 11224 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. I-Semester Main & Backlog Examinations, Jan./Feb.-2024

Introduction to Electronics Engineering

(Common for CSE & AIML)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Explain the forward and reverse bias conditions of a p-n junction diode.	2	2	1	1
2.	What are transition and diffusion capacitances in pn junction diode?	2	1	1	1
3.	How transistor acts as an amplifier?	2	2	2	1
4.	State the difference between BJT and MOSFET.	2	1	2	1
5.	Explain briefly about the current-series and voltage-series feedback.	2	1	3	1
6.	List the differences between the feedback amplifier and oscillator.	2	1	3	1
7.	Define slew rate and common mode rejection ratio of operational amplifier.	2	1	4	1
8.	Construct the voltage subtractor using op-amp and explain it's working.	2	3	4	2
9.	What is a transducer?	2	1	5	1
10.	Write the applications of thermocouple?	2	1	5	1
	Part-B $(5 \times 8 = 40 Marks)$	-parti			
11. a)	Explain the working of full wave center tapped transformer rectifier and compare it's ripple factor and efficiency with bridge rectifier.	4	2	1	1
b)	A full-wave rectifier uses two diodes, the internal resistance of each diode may be assumed constant at 30 Ω . The transformer r.m.s secondary voltage from centre tap to each end of secondary is 45 V and load resistance is 900 Ω . Find i) V_m ii) I_m iii) I_{dc} iv) I_{rms} .	4	3	1	2
12. a)	Explain the working of N-channel metal oxide semiconductor FET of type depletion with transfer and drain characteristics.	4	2	2	1
b)	Construct the h-parameter equivalent models for common-emitter and common-collector configurations and write the definition of each parameter.	4	3	2	2
13. a)	Construct the RC phase oscillator circuit and explain it's working principle.	4	3	3	1
b)	Describe the advantages of negative feedback in amplifiers.	4	2	3	1

14. a)	Determine the output for the circuit of Fig. 3 with components $R_f = 1$ M Ω , $R_1 = 100 \text{k}\Omega$, $R_2 = 50 \text{k}\Omega$, and $R_3 = 500 \text{k}\Omega$.	4 4 4 2					
	$\begin{array}{c} V_1 \\ \downarrow \\ \end{array}$ $V_2 \\ \downarrow \\ \end{array}$ Fig. 3						
b)	Derive the output expression of an active integrator and explain it's working principle.	4	4	v .ru	4	1	
15. a)	Explain the working principle of Piezoelectric transducer.	4	2		5	1	
b)	Illustrate the gas and humidity sensors with relevant applications.	4	2		5	1	
16. a)	Construct the Voltage regulator using Zener diode and explain the same.	4	3		1	1	
b)	Explain the input and output characteristics of a common emitter amplifier with its working.	4	2		1	1	
17.	Answer any <i>two</i> of the following:						
a)	Construct the crystal oscillator using bipolar junction transistor and explain it's working.	4	3		3	1	
b)	What are the characteristics of an ideal op-amp. Explain the concept of virtual ground in op-amp.	4	1		4	1	
c)	Draw the functional diagram of C.R.O and describe its applications.	4	2		5	_ 1	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i) .	Blooms Taxonomy Level – 1	22.5%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	37.5%
